

Sharing of an Advanced Learning and Teaching Experience to Gifted and Talented Secondary School Students of Hong Kong

Benny Hon @ LTExpo 2022 (HKCEC) on 8 December 2022 Professor Department of Mathematics City University of Hong Kong

專業 創新 胸懷全球 Professional・Creative For The World

Acknowledgement

Gifted Education Fund Off-school Advanced Learning Programmes for Gifted Students

Implementation Plan

Programme Number:	2019-004 (For secondary levels)		
Title of Programme:	Advanced Talent Education Programmes for Gifted Students in Hong		
	Kong		
	(香港資優生才能培訓計劃)		
Programme Provider:	City University of Hong Kong		
Maximum Number of	50		
Participants and Class Level	Secondary 3 to Secondary 5 students		
in the 2019/20 school year:			
Programme Duration:	12 months		

Project Plan (Feb 2020 – Jan 2021)

Phase 1 (Preparation)

Briefing Seminar and Selection Test(Written gifted quotient test, math subject test, strengths & difficulties questionnaire, children's hope scale and brief strengths scale):30 May 2020

Announcement of Final Result: **10 June 2020** (A total of 54 students were admitted)

Project Plan: Phase 2 (Mathematics/Psychology)

4 full-day lessons on mathematics related to STEM and2 half-day lessons on psychology

4 July 2020	Sorting Algorithm-Sorting Machine			
8 August 2020	Calculus Theory-Cycloid Curve, Square Wheel			
15 August 2020	Probability & Statistic Theory-Galton Board			
22 August 2020	Chaos & Fractals Theory-Double Pendulum			
29 August 2020	Psychology			
5 September 2020	Psychology			

The STEM lessons included Mathematics theory/3D Modelling techniques to equip students with the ability to hands-on mathematical models from raw materials and 3D software "Tinkercad"

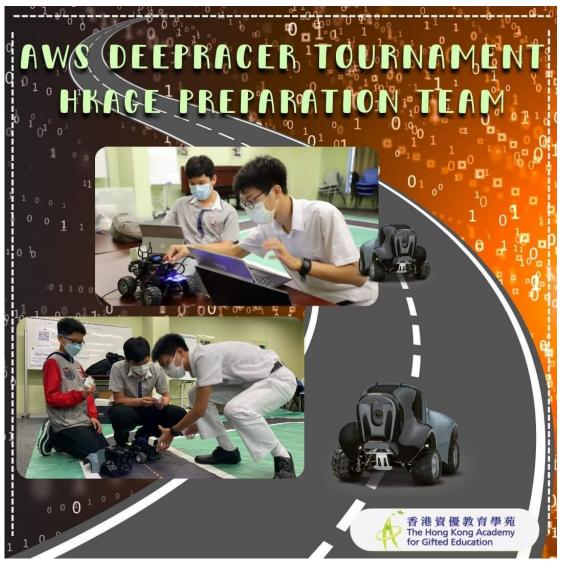
The Psychology lessons demonstrated the strengths of students through daily activities and how their talents could be used to cope with the adversity in the covid-19 pandemic.

Market products related to STEM

- 1. Mbot Mechanical, 4Wheel Driving
- 2. Mechanical robot LEGO WeDo2.0, Metas, LittleBits
- 3. Coding for AI and electronic devices
- 4. 3D printing

STEM with Mbot

Source pictures from ezone magazine


Video taken from LTExpo-2022

Mechanical Robot - LEGO

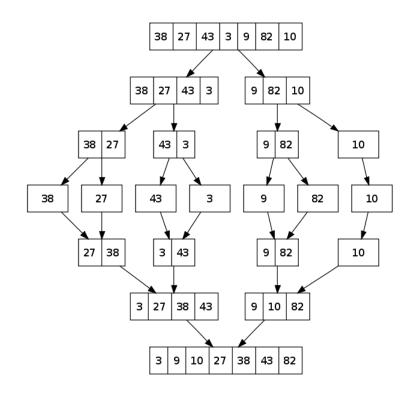
Source pictures from ezone magazine

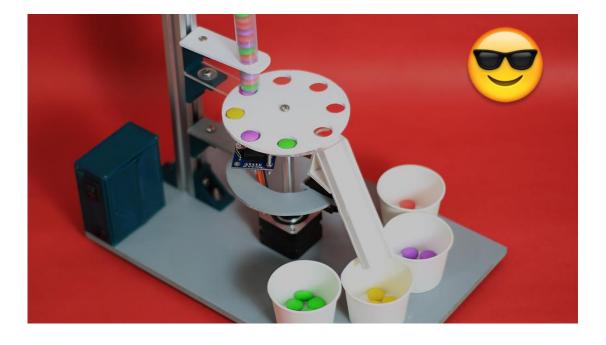
Coding for AI and electronic devices

Photos taken from LTExpo-2022

3D Printing

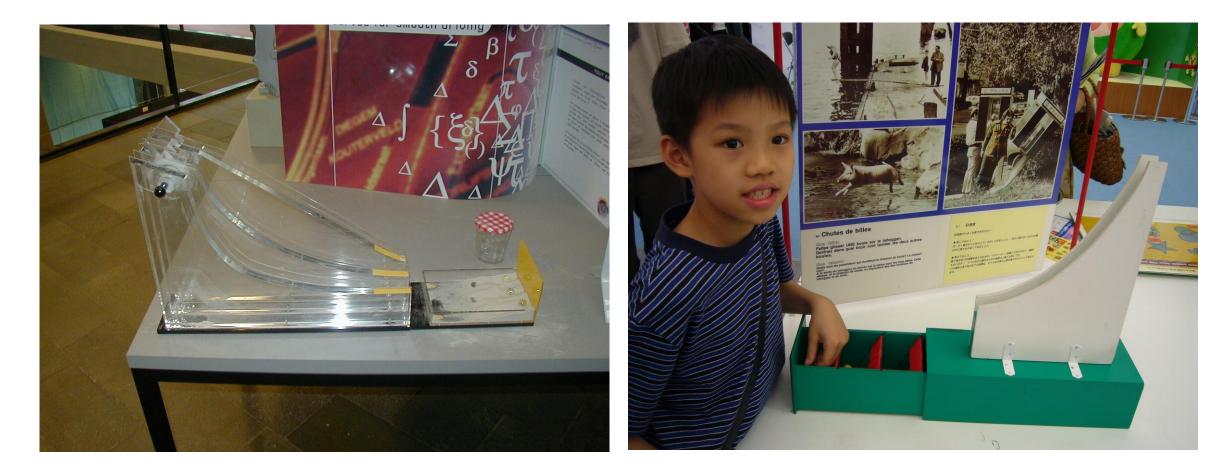
Photos taken from LTExpo-2022

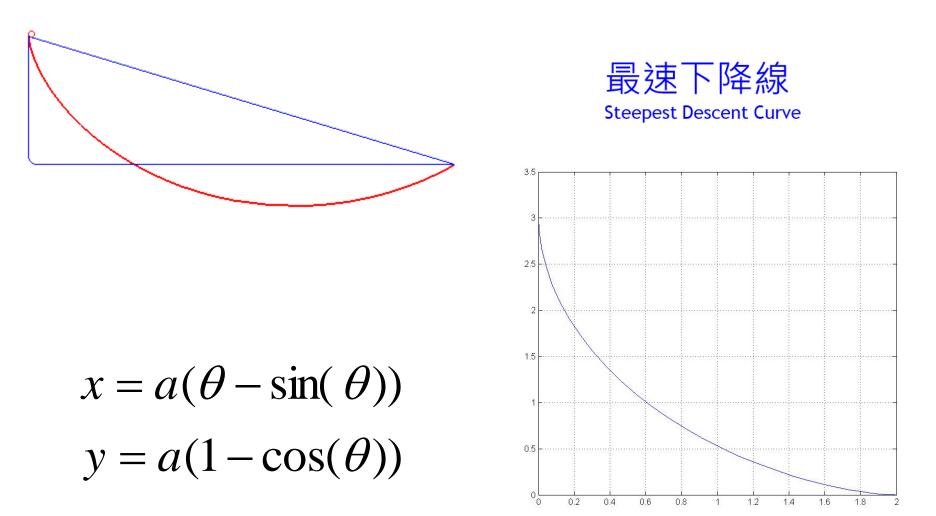

GEF Project: Aims and Objectives


- Experience mathematics
- Appreciate the beauty of mathematics
- Showcase the beauty of mathematics with hands-on model built from 3D printing or raw materials

How to experience Mathematics?

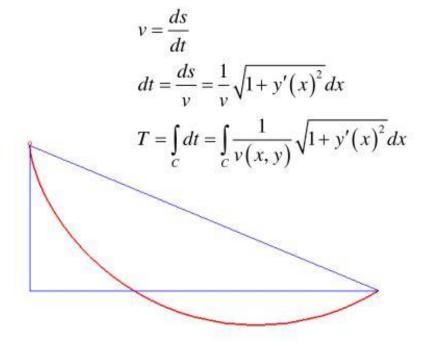
- Reproduction of models that have been exhibited
- Improvement on the "quality" of the models
- Creation of new model that has never been exhibited


Phase 2-Sorting Algorithm: Sorting Machine


Source picture from Mr. Innovative

Phase 2-Calculus Theory: Cycloid Curve & Square wheel

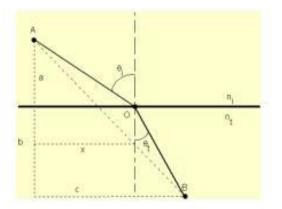
Photos taken from Museum of Mathematics in Hokkaido


What is a Cycloid Curve?

How to appreciate the beauty of Mathematics?

Brachistochrone Problem

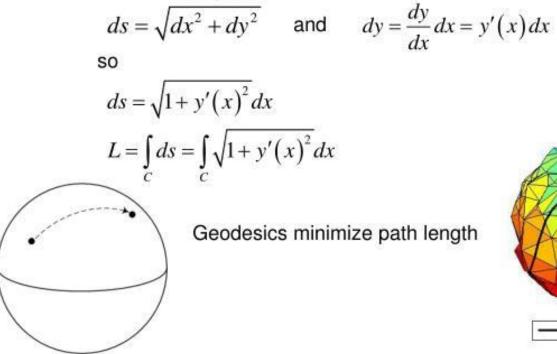
Finding the shape of a wire joining two given points such that a bead will slide (frictionlessly) down due to gravity will result in finding the path that takes the shortest amount of time.

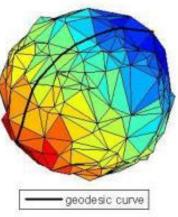

The shape of the wire will minimize time based on the most efficient use of kinetic and potential energy.

Fermat's Principle

Refractive index of light in an inhomogeneous medium

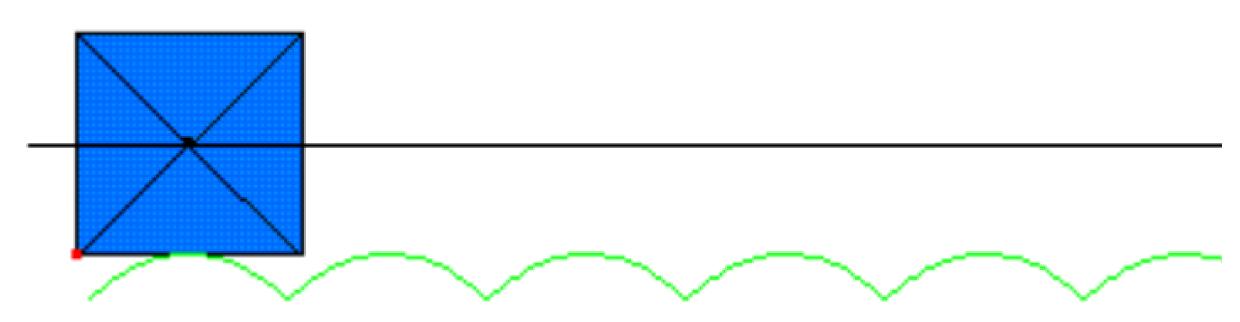
v = c/n, where v = velocity in the medium and n = refractive index Time of travel = $T = \int_{C} dt = \int_{C} \frac{ds}{v} = \frac{1}{c} \int_{C} n ds$ $T = \int_{C} n(x, y) \sqrt{1 + y'(x)^2} dx$


Fermat's principle states that the path must minimize the time of travel.



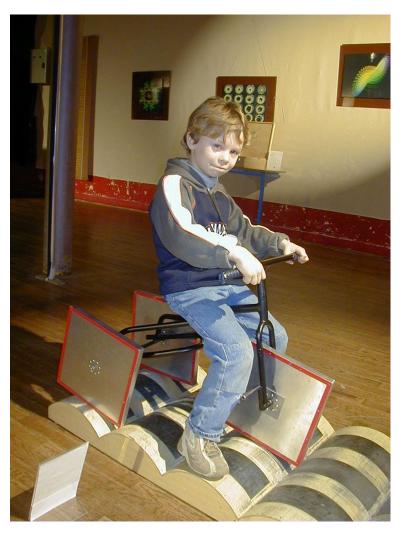
Geodesics

A locally length-minimizing curve on a surface

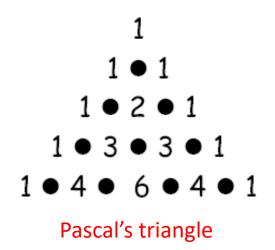

Find the equation y = y(x) of a curve joining points (x_1, y_1) and (x_2, y_2) in order to minimize the arc length

How is square wheel be possible to move?

- It must move on a surface of inverted catenaries.
- Shape like cycloid curve.


A square rolling on a bed of inverted catenaries.

Square Wheels


Source picture from google search

How about this?

Source picture from google search

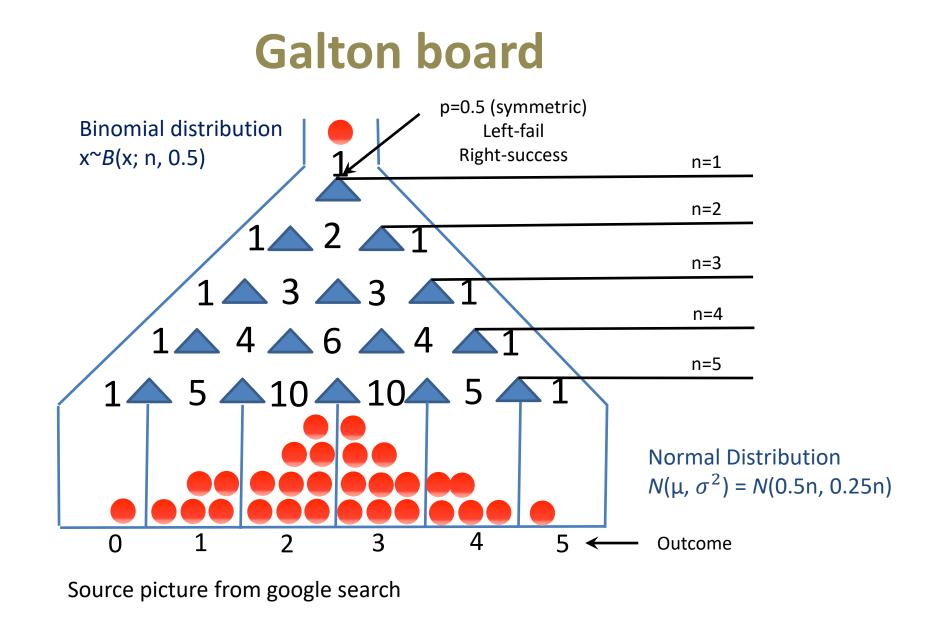
Phase 2-Probability & Statistics: Galton Board

Binomial Distribution *B*(x; n, p)

x~B(x; n, p) n trials each with p successful rate. The total number of successes is a random variable, x

Photo taken from Museum of Mathematics in Hokkaido

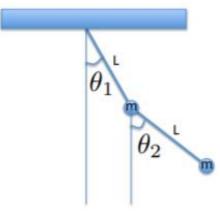
Normal Approximation to Binomial Distribution


Normal Distribution $N(\mu, \sigma^2)$

Source pictures from google search

Photo taken from Museum of Mathematics in Hokkaido

Galton Board


Source video from youTube

Phase 2-Chaos & Fractal: Double Pendulum

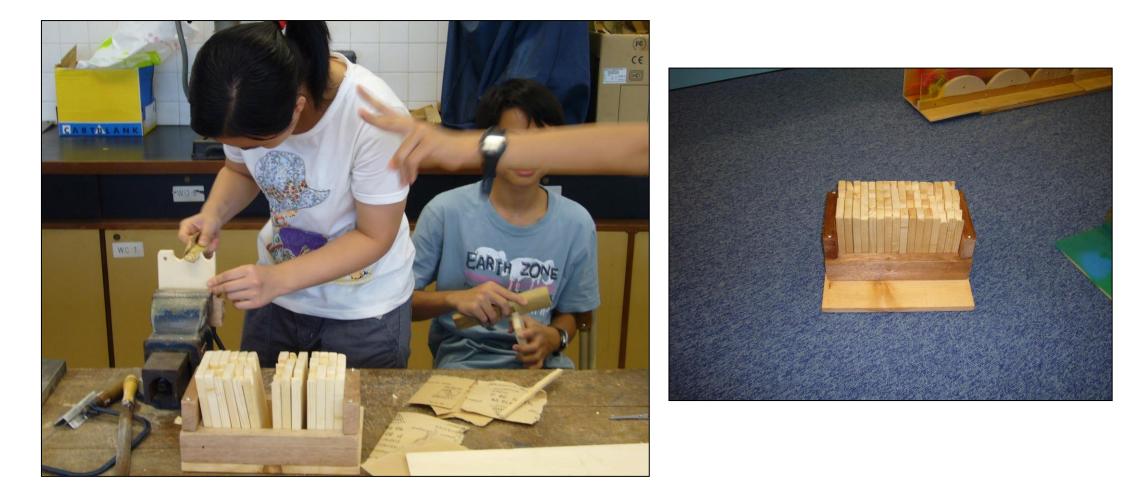
The equations of motion for a simplified model of a double pendulum are

$$2mL\frac{d^2\theta_1}{dt^2} - mL\left(\frac{d\theta_2}{dt}\right)^2 \sin(\theta_2 - \theta_1) + 2mg\sin\theta_1 = 0,$$

$$2mL\frac{d^2\theta_2}{dt^2} - mL\left(\frac{d\theta_1}{dt}\right)^2 \sin(\theta_2 - \theta_1) + 2mg\sin\theta_2 = 0.$$

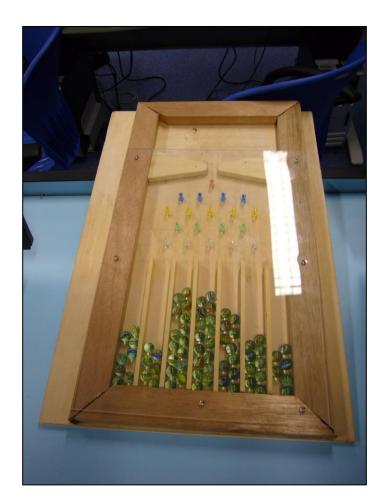
The slightly change of values in the parameters L, θ_1 , θ_2 gives very different chaotic patterns

How to showcase the hands-on math models?


Raw materials hands-on experience in a Summer math project at La Salle College in August 2006. S3-S4 students:

- 8 boys from La Salle College
- 8 girls from Heep Yunn School
- 8 boys+girls from Pui Ching Middle School

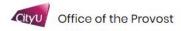
Mechanical Workshop @ La Salle College



Binary Sorting Machine

Galton Board

Square Wheel & Steepest descent curve

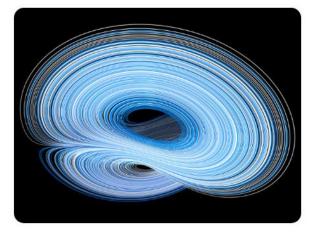


Information Session – A brief introduction of the courses

3D MODEL FOR REVEALING THE BEAUTY OF MATHEMATICS 3D 模型展示數學之美

APPLICATION CLOSED

Schedule

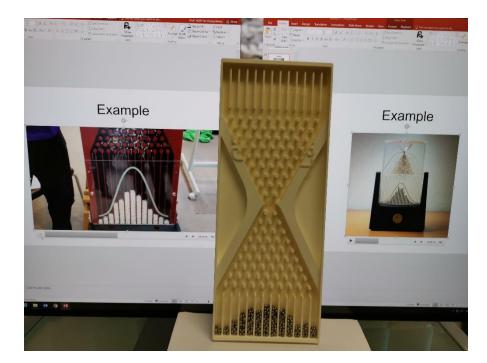

8 July 2017	9:00a.m. – 5:00p.m.
15 July 2017	9:00a.m. – 5:00p.m.
29 July 2017	9:30a.m. – 11:30a.m.

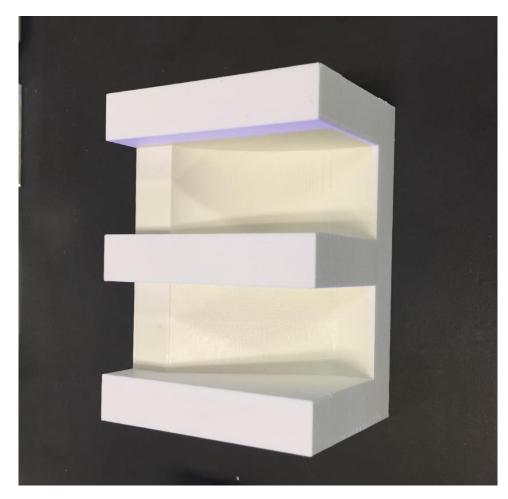
Instructor Prof. Benny Hon (Department of Mathematics)

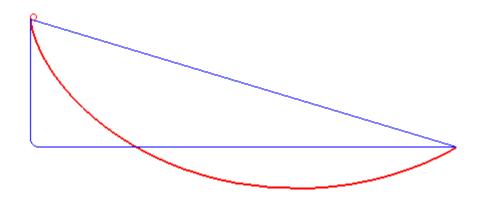
Target Participant HKAGE student members Medium of Instruction Cantonese

Downlaod PDF for more details

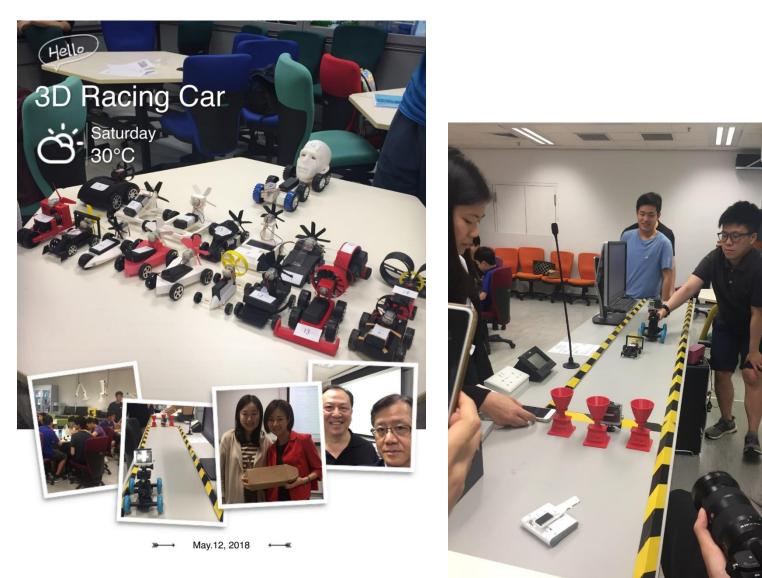
DOWNLOAD PDF (ENGLISH VERSION) 「載PDF (中文版)




Showcase hands-on models by 3D printing Galton Board


Bought from Amazon @US\$40

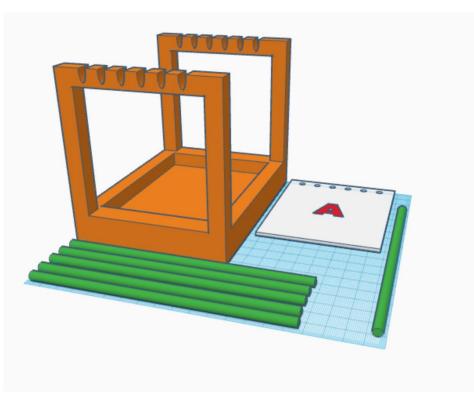
3D printing from the GEF project with 3D software Tinkercad



3D printing by a student during one morning session of the 3D modelling project

3D Car Racing

Showcase hands-on models by raw materials



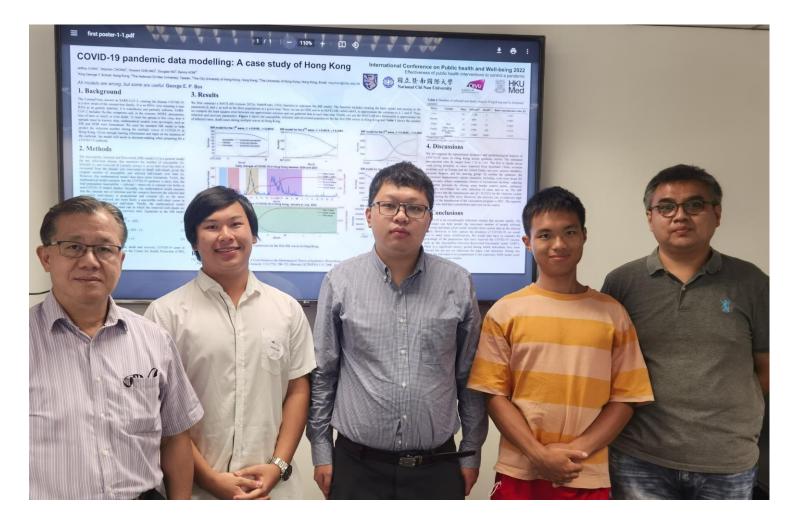
Sorting Machine

The first phase 2 meeting was arranged face-to-face for teaching sorting algorithm: bubble, binary, and merge sorts. Demonstration of binary sort was done through using the Poker. A 3D model on binary sorting machine was built by the 3D software Tinkercad.

Hands-on square-wheel car by a gifted student

Cannot be compared to most STEM exhibition which normally showcase fancy manufacturedesigned robots with all sorts of AI and electronic devices.

BUT this is the rationale of this teaching and learning programme for math@STEM education in the hope that the beauty of mathematics behind the hands-on models can be appreciated and mastered.


Project Plan: Phase 3 (Individual Research)

Phase 3

Lesson 7-10 Individual Research (14 & 28 November 2020, 12 & 26 December 2020)				
Zoom at CityU and face-to-face consultation by appointment during 1-31 January 2021				
Topics:	• How to do research in mathematics?			
	• Literature survey			
	 Methodology in Mathematical Modelling 			
	Numerical software Matlab for solving math models			
List of Students'	Three-body movement problem in Astronomy			
Proposals (a total of	 Cryptology for one-time password used in Internet 			
8 students were	 Mathematical and 3D Model for Covid-19 			
admitted into Phase	Heat Conduction Model for Design of Clothes			
3 on Individual	 Mathematical Model for Cooling of Liquids 			
Research	• Predicting the Maximum Growth Potential of Nations			
	through Analysis of Current Energy and Resource Statistics			
	Queueing System for Minimizing Customers' Waiting Time			
	 Mathematical Logic in Human's Behavior 			

Throughout the research lessons, these students were required to give oral presentations of their mathematical models and proposed solution methodologies. Some of these research works are very impressive, showing the potential research ability of mathematically gifted secondary students.

Research Group on Covid-19 pandemic

A Research Group on Covid-19 pandemic data modelling in Hong Kong was established in the last summer 2022, which composed of one of the eight finally selected students from the GEF project; one CityU MA Year 3 student; and one Chemistry major Year 3 student from Taiwan Chi Nan University. Research Methodology: Data collection, analysis, and visualization

• Data Sources

Centre for Health Protection

• Tools for developing visualizations MATLAB, Tableau and Excel.

The graphical displays can help us identify trends patterns, outliers in the data and formulate hypotheses for further testing

The research group met regularly in every Saturday afternoon. Topics related to Covid-19 pandemic were proposed, discussed, and investigated.

Big data visualization of multiple International Conference on Public health and Well-being 2022 Effectiveness of public health interventions to control a pandemic, 18-19 November, 2022 waves of COVID-19 infection in Hong Kong 20 國立暨南國際大學 Cityu Stephen CHONG¹, Jeffrey CHAN², Howard CHEUNG³, Douglas NG⁴, Benny HON^{3*} National Chi Nan University ¹The National Chi Nan University, Taiwan; ²King George V School, Hong Kong; ³The City University of Hong Kong, Hong Kong; ⁴The University of Hong Kong, Hong Kong,

Corresponding author: Benny HON Benny.Hon@cityu.edu.hk 1. Background

The COVID-19 pandemic has caused significant disruptions to healthcare worldwide. Figure 1(A) shows the cumulative confirmed COVID-19 cases per million people and Figure 1(B) shows shows people's concern during the fifth wave of COVID-19 in Hong Kong. Data visualization can aid in persuading people to change their behavior. Once a virus has spread, public health Oficials must make critical judgments about how much information to communicate and when to dispense it. One of the musc critical components of limiting an outbrack is encouraging people to adjust their behavior when it is not immediately evident that they should. Data visualization has become highly significant in communicating and convincing people. The study's aimed to visualize the COVID-19 pandemic's transmission in Hong Kong during the fust first five wave, as well as to improve overall preparedness and response for communicable diseases of importance to the public. The Hong Kong government has developed contingency plans and drills to test the ability of relevant government departments and organizations to deal with potential major outbreaks of infectious diseases and public health emergencies, as well as to raise community and healthcare personnel awareness and the state of capability.

Figure 1. (A) Cumulative confirmed COVID-19 cases per million people between 22 January 2020 and 31 August 2022. (B) Word cloud shows people's concern during the fifth wave of COVID-19 in Hong Kong (source: Google analytics) (A)

2. Methods

The daily number of confirmed COVID-19 cases in Hong Kong by the date of symptom onset was provided by the Centre for Health Protection (CHP). Data cleaning is the first step of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. Different data visualization techniques such as line graph, bubble chart, heat map, and word clouds are used to unlock the benefits and make accurate decisions from the vast data.

Several software tools will be used for developing visualizations, such as MATLAB, Tableau and Excel. The graphical displays can help us identify trends, patterns and outliers in the data, and formulate hypotheses for further testing.

3. Results

The following figures show different visualization results and insights derived during the first five waves in Hong Kong.

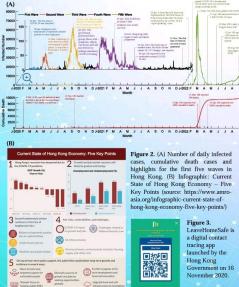


Figure 4. (A) Percentage changes of incidence of cases per 100,000 tested positive for COVID-19 by nucleic acid tests and rapid antigen tests by residential districts in July and August 2022, as well as the distribution of 43 public hospitals in Hong Kong. (B) Heat map shows the percentage of daily changes in COVID-19 Worldwide and in Hong Kong in August 2022.

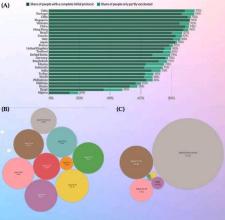


Figure 5. (A) Vaccination rate for different countries. (B) Vaccination rate for different age groups. (C) Death rate for COVID-19 patients who received one dose or less for different age groups.

COVID-19 pandemic data modelling: A case study of Hong Kong

Jeffrey CHAN¹, Stephen CHONG², Howard CHEUNG³, Douglas NG⁴, Benny HON^{3*}

¹King George V School, Hong Kong; ²The National Chi Nan University, Taiwan; ³The City University of Hong Kong, Hong Kong; ⁴The University of Hong Kong, Hong Kong, Corresponding author: Benny HON Benny.Hon@cityu.edu.hk

1. Background

Coronavirus. known as SARS-CoV-2 which causes the disease COVID-19, is a new strain of the coronavirus family. It is an RNA virus, which means it uses RNA as its genetic material. It is waterborne and partially airborne. SARS-CoV-2 includes flu-like symptoms and, in the extreme, MERS, pneumonia, loss of taste or smell, and even death. To limit the spread of this virus, how it spreads must be known; thus, mathematical models were developed, such as Susceptible-Infectious-Removed (SIR) and Susceptible-Exposed-Infectious-Removed (SEIR). We used the standard SIR model to help predict the infection number during the multiple waves of COVID-19 in Hong Kong. Given sufficient starting information and input on the duration of the outbreak, the model will assist in decision-making when preparing for a COVID-19 outbreak

2. Methods

The SIR model [1, 2] is a general model for any infectious disease that measures the number of susceptible (S), infectious (I) and removed (R [initially always 0, as no individual has died or recovered from the disease yet] recovered or dead) individuals given the original number of susceptible and infected individuals over time (t). However, this mathematical model has some limitations

Firstly, the mathematical model assumes that the COVID-19 epidemic is short; thus, the total population (susceptible + infectious + removed) is constant (no births or non-COVID-19 related deaths)

3. Results

Figure 1 shows the susceptible, infectious and recovered populations for the first five waves in Hong Kong, Table 1 shows the number of infected and death cases during multiple waves in Hong Kons

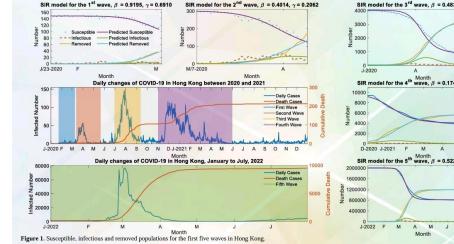


Table 1. Number of infected and death cases in Hong Kong and its dominant variants Provide the providence of the second Wave

wave	variants	Days	mecteu	Death	basic reproduction ratio, p/y	
First	-	41	< 100	2	1.3307	COVID
Second		33	800+	2	1.9467	help pr
Third	Beta	75	3700+	93	1.9302	variable
Fourth	Alpha, Beta, Delta, Gamma	184	5700+	102	1.4713	COVID
Fifth	Delta, Omicron	212+	1.34M+	9200+	1.5122	of the

* Provisional figures

The data is up to 31/July/2022

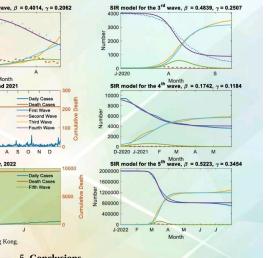
4. Discussions

We investigated the transmission dynamics and epidemiological features of COVID-19 cases in Hong Kong across epidemic waves. The estimated reproduction ratio R₀ ranged from 1.33 to 1.95. The first to fourth waves were primarily due to cases imported from Mainland China, overseas locations such as Europe and the United States, sea crew, aircrew members, domestic helpers and dancing groups. To combat the epidemic, the government implemented various measures, including work from home for civil servants, school suspension, closure of recreational facilities, reduction of importation pressure by closing some border control points and enhanced laboratory surveillance for early detection of cases. The SIR model showed that the transmission rate ($\beta = 0.5223$) for the Omicron variant was high during the fifth wave. However, the recovery rate is relatively high because of the introduction of the vaccination program in 2021. The majority of those who died had comorbidities and were unvaccinated.

International Conference on Public health and Well-being 2022 Effectiveness of public health interventions to control a pandemic, 18-19 November, 2022

All models are wrong, but some are useful, George E. P. Box

(1)


(2)

Secondly, the mathematical model assumes that the constant rate of infection and the contacts (between the infected and susceptible individuals) is proportional and constant (β). so the more individuals are infected, the more likely a susceptible individual comes in contact with an infected individual. Thirdly, the mathematical model assumes a constant rate in which the removed individuals are increasing (y) (death rate or recovery rate). Equations in the SIR model include:

$\frac{dS}{dt} = -\beta SI,$	
$\frac{dI}{dt} = \beta SI - \gamma I,$	
dR _ w I	
$\frac{dR}{dt} = \gamma I.$	

The daily number of confirmed, death and recovery COVID-19 cases in Hong Kong were collected from the Centre for Health Protection (CHP), Hong Kong.

We first constructed a MATLAB (version 2022a; MathWorks, USA) function to represent the SIR model. The function included creating the basic model and passing in the parameters β , and γ , as well as the three populations at a given time. We then used an ODE solver in MATLAB, called ode45, to approximate the solutions to S, I and R. We computed the least squares error between our approximate solution and our gathered data at each time step. Finally, we used the MATLAB tool fminsearch to approximate the infection and recovery parameters

D-19 is an exceptionally infectious disease that spreads rapidly. The SIR model can redict the maximum number of people infected, recovered, and dead, given initial les from current data on the infected people. However, to truly capture the dynamics of D-19, many modifications are needed. We would also have to consider the percentage of the populations that have received the COVID-19 vaccine, such as the Susceptible Infectious-Removed-Vaccinated (SIRV) model. There is a significant latency period during which individuals have been infected but are not yet infectious for many vital infections. During this period, the individual is in compartment E (for exposure), and the SEIR model could be introduced in future studies.

References

[1] Kermack, W.O. and A.G. McKendrick, A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772); p. 700-721.

[2] Cooper, I., A. Mondal, and C.G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals, 2020. 139: p. 110057.

2 poster presentation at the 4th International Conference on Public Health and well-being 2022

HONG KONG MEDICAL JOURNAL LETTER TO THE EDITOR

Accepted and will appear in 2023. The 2021 Journal Impact Factor for the HKMJ is 3.125.

Suggestions to minimize the vaccination hesitancy of children in Hong Kong

Jeffrey Chan¹, Kei Shing Ng², Benny Yiu Chung Hon³, Simon Ching Lam^{4*}

¹King George V School, Hong Kong
²Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong
³Department of Mathematics, The City University of Hong Kong
⁴School of Nursing, Tung Wah College, Hong Kong
* Corresponding author: simonlam@twc.edu.hk

To the Editor

COVID-19 vaccine hesitancy is high initially (1) and still prevalent in Hong Kong.

TYPE Brief Research Report PUBLISHED XX XX 2022 DOI 10.3389/fpubh.2022.1053873

Check for updates

OPEN ACCESS

EDITED BY Reza Lashgari, Shahid Beheshti University, Iran

REVIEWED BY Mohamed El-Kassas, Helwan University, Egypt Qi Ye, South China Normal University, China Saroj Chandra, OP Jindal University, India

*CORRESPONDENCE Simon Ching Lam simonlam@twc.edu.hk Benny Yiu Chung Hon benny.hon@cityu.edu.hk

SPECUALTY SECTION This article was submitted to Infectious Diseases: Epidemiology and Prevention, a section of the journal Frontiers in Public Health

RECEIVED 26 September 2022 ACCEPTED 21 November 2022 PUBLISHED XX XX 2022

TATION

Ng HS, Hon JMH, Chong SCC. Cheung HHK, Chan J, Lam SC and Hon BYC (2022) Implementation of the compulsory universal lessing scheme in Hong Kong: Mathematical simulations of a household-based pooling approach. Front. Public Health 10:1055873.

COPYRIGH

e 2022 Ng, Hon, Chong, Cheung, Chan, Lam and Hon. This is an open-access article distributed under the terms of the Creative Commons Attribution Leners (ICC BN). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Implementation of the compulsory universal testing scheme in Hong Kong: Mathematical simulations of a household-based pooling approach

Kei Shing Ng¹, Jeffrey Man Hin Hon^{2,3}, Stephen Chau Chun Chong⁴, Howard Ho Kan Cheung⁵, Jeffrey Chan⁶, Simon Ching Lam^{7*} and Benny Yiu Chung Hon^{5,8*}

¹Department of Diagnostic Radiology, U Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China, ²NVIDIA AI Technology Center (NVAITC), NVIDIA, Santa Clara, CA, United States, ³Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China, ⁴Department of Applied Chemistry, National Chi Nan University, Puli, Taiwan, ⁵Department of Mathematics, CH University of Hong Kong, Kowloon Tong, Hong Kong SAR, China, ⁴King George V School, Hong Kong, Kong Kong SAR, China, ⁵School of Nursing, Tung Wah College, Hong Kong, Hong Kong SAR, China, ¹Department of Psychology, University of Science and Technology of China. Hefe, China

This study aims to propose a pooling approach to simulate the compulsory universal RT-PCR test in Hong Kong and explore the feasibility of implementing the pooling method on a household basis. The mathematical model is initially verified, and then the simulation is performed under different prevalence rates and pooled sizes. The simulated population is based in Hong Kong. The simulation included 10,000,000 swab samples, with a representative distribution of populations in Hong Kong. The samples were grouped into a batch size of 20. If the entire batch is positive, then the group is further divided into an identical group size of 10 for re-testing. Different combinations of mini-group sizes were also investigated. The proposed pooling method was extended to a household basis. A representative from each household is required to perform the RT-PCR test. Results of the simulation replications, indicate a significant reduction (p < 0.001) of 83.62, 64.18, and 48.46% in the testing volume for prevalence rate 1, 3, and 5%, respectively. Combined with the household-based pooling approach, the total number of RT-PCR is 437, 304, 956, 133, and 1, 375, 795 for prevalence rates 1, 3, and 5%, respectively. The household-based pooling strategy showed efficiency when the prevalence rates in the population were low. This pooling strategy can rapidly screen people in high-risk groups for COVID-19 infections and guarantine those who test positive, even when time and resources for testing are limited.

KEYWORDS

COVID-19, compulsory universal test, prevalence rate, sample pooling, mass screening, simulation

A brief research report has just been accepted to publish at the journal 'Frontiers in Public Health', which has a high impact factor of 6.641. Frontiers is ranked the third most-cited publisher in USA. This paper will appear by the end of this December 2022.

Frontiers in Public Health

01

Conclusion

 This pilot research experience group between secondary school and university students demonstrates the benefit of collaborative teaching and learning education project (for example, the EDB Gifted Education Fund). Encouraging results can be achieved by arousing the interest of gifted students through teaching STEM and motivating their self-learning desire from solving real-life problems.

Q & A

Benny Hon @ LTExpo 2022 (HKCEC) on 8 December 2022 Professor Department of Mathematics City University of Hong Kong

專業 創新 胸懷全球 Professional・Creative For The World